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THEORETICAL MODELS

A variety of different procedures based on quantum mechanics (so-
called quantum chemical models) have been developed to calculate 
molecular structure and properties as well as infrared, NMR and 
UV/visible spectra. All follow from a deceptively simple looking 
Schrödinger equation first written down in 1927.

HΨ = εΨˆ

Ĥ (the Hamiltonian or more precisely Hamiltonian operator) is 
the only known. It describes the kinetic energies of the particles that 
make up a molecule and the Coulombic interactions between the 
individual particles. Positively-charged nuclei repel other nuclei, 
and negatively-charged electrons repel other electrons, but nuclei 
attract electrons. Ψ (the wave function) is a function of the Cartesian 
coordinates, and ε (the energy) is a number. The goal in solving the 
Schrödinger equation is to find a function that when operated on by 
the Hamiltonian yields the same function multiplied by a number. 
Note that there are many (actually an infinite number of) solutions 
to the Schrödinger equation. These correspond to the ground and 
numerous excited states of an atomic or molecular system.

The energy of a molecule can be measured. On the other hand, the wave 
function has no physical meaning, and is not subject to experimental 
measurement, although the square of the wave function times a small 
volume element gives the probability of finding an electron inside 
that volume. This exactly corresponds to what is actually measured 
in an X-ray diffraction experiment.

The Schrödinger equation has been solved exactly for the hydrogen 
atom (a one-electron system), where the wave functions are familiar to 
chemists as the s, p, d, ... atomic orbitals. The lowest-energy s orbital 
corresponds to the ground state of the hydrogen atom, whereas the 
higher-energy solutions correspond to excited states.

s orbital p orbital d orbital
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The Schrödinger equation may easily be written down for many-
electron atoms as well as for molecules, although it cannot be solved. 
Even something as seemingly simple as the helium atom with only 
two-electrons presents an insurmountable problem. Approximations 
must be made.

Hartree-Fock Molecular Orbital Models

Hartree-Fock molecular orbital models or molecular orbital 
models, as they are commonly referred to, were the first practical 
quantum chemical models to be formulated. They result from making 
three approximations to the Schrödinger equation: 

1. Separate nuclear and electron motions. The Born-Oppenheimer 
approximation says that “from the point of view of the electrons”, 
the nuclei are stationary. This eliminates nuclear motion and leads 
to an electronic Schrödinger equation which can be solved for 
the H2

+ molecule, but cannot be solved for molecules with more 
than one-electron. The Born-Oppenheimer approximation is of 
little consequence for the description of molecular properties, for 
example, equilibrium geometries and reaction energies, and may 
be used without concern.

2. Separate electron motions. The Hartree-Fock approximation 
eliminates the need of having to simultaneously account for the 
motions of several electrons. It leads to a much simpler set of 
equations in which the motion of each electron in an environment 
made up of the nuclei and all the other electrons is sought. 

3. Represent each one-electron solution or molecular orbital 
by a linear combination of atom-centered functions or atomic 
orbitals. The LCAO (Linear Combinations of Atomic Orbitals) 
approximation reduces the problem of finding the best functional 
form for the molecular orbitals to the much simpler problem of 
finding the best set of linear coefficients. As the number and 
complexity of the atomic orbitals increases, the energy and other 
properties approach limiting values. However, computational 
cost also increases. The goal is to provide as few functions as 
possible to yield a value for the property of interest that adequately 
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reflects its limit. Note, that the limiting values of properties are 
not expected to be the same as experimental values, but rather 
reflect the behavior of the Hartree-Fock model. 

Basis Sets

Gaussian functions are polynomials in the Cartesian coordinates 
times an exponential in the square of the distance from the origin. 
They are distinct although very closely related to the exact solutions 
of the hydrogen atom (exponential functions in the distance), and 
are labeled 1s, 2s, 2p, ... , the same nomenclature used to describe 
hydrogen atom solutions. 

A minimal basis set includes only sufficient functions to hold all 
the electrons on an atom and to maintain its spherical shape. This 
involves a single 1s orbital for each hydrogen atom, and a set of five 
orbitals (1s, 2s, 2px, 2py and 2pz) for each carbon atom. Because a 
minimal basis set incorporates only one set valence p functions, the 
components of which are the same size, atoms in nearly spherical 
environments will be better described than atoms in aspherical 
environments. A split-valence basis set addresses this problem by 
providing two different sets of valence p functions, one compact 
set and one loose set. This allows different linear combinations 
for different directions. For example, the compact p orbital can be 
emphasized to construct a σ bond while the loose p orbital can be 
emphasized to construct a π bond.

ps  =  inner                  +  outer

pp  =  inner                   +  outer

Because the functions in a minimal or split valence basis set are 
centered on the atoms, they may have difficulty describing electron 
distributions that fall in between atoms (that is, bonds).  Polarization 
basis sets address this problem by providing a set of d-type functions 
(polarization functions) on main-group elements, and (optionally) a 
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set of p-type functions on hydrogen. The resulting combinations can 
be thought of as hybrid orbitals, for example, the pd and sp hybrids 
shown below.

+  λ

+  λ

The so-called 6-31G* basis set will be used for the infrared and NMR 
calculations described in future topics. The number “6” to the left of 
the “-” in the name  indicates that 6 functions are used to describe each 
inner-shell (core) atomic orbital. The numbers, “31” to the right of 
the “-” indicate that groups of 3 and 1 functions are used to describe 
each valence-shell atomic orbital. “*” designates that polarization 
functions are supplied for non-hydrogen atoms. Were two stars to be 
present (as in 6-31G**) this would indicate that p-type  polarization 
functions would also be placed on hydrogen atoms.

The valence basis functions can be further split and additional 
polarization functions can be added including f-type functions. A 
commonly used basis set is designated 6-311+G(2df,2p). “311” 
indicates a triply-split valence, “2df” indicates that two sets of d-type 
functions and a set of f-type functions are added to the valence of 
heavy atoms, and “2p” indicates that two sets of p-type functions are 
added to the valence of hydrogen atoms. 

Taken together, these three approximations lead to a set of 
equations known as the Roothaan-Hall equations. They increase 
in computational cost as the cube of the size (number of basis 
functions), and can easily be applied to molecules incorporating up 
to 100 heavy (non- hydrogen) atoms.

Beyond Hartree-Fock Models

Of the three approximations we have made to reach Hartree-Fock 
models, the second is to be taken most seriously. According to the 
Hartree-Fock approximation, electrons “move independently”, 
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which means that both the electron-electron repulsion energy and 
the total energy will be too large. The limiting Hartree-Fock energy 
is, therefore, necessarily higher (less negative) than the experimental 
energy. Electron correlation is the term give to describe the 
coupling or correlation of electron motions. The correlation energy 
is defined as the difference between the Hartree-Fock energy and the 
experimental energy and is necessarily a negative quantity.

There are two conceptually different approaches for calculating the 
correlation energy, and numerous specific models arising from each of 
these approaches. Wave function based models start from the Hartree-
Fock wave function combining it with wave functions resulting from 
electron excitations from filled to empty molecular orbitals. Density 
functional models supplement the Hartree-Fock Hamiltonian. 

Configuration Interaction Models

Configuration interaction models are archetypal of wave function 
based correlated models. In the unachievable limit, so-called full 
configuration interaction, all possible single and multiple electron 
promotions from occupied to unoccupied Hartree-Fock molecular 
orbitals and assuming a complete basis set, the energy is same as 
would be achieved by solution of the electronic Schrödinger equation. 
More practical limited configuration interaction schemes have 
been formulated by limiting the number of electron simultaneously 
promoted (1-electron, 2-electron, ...) and the number of filled and 
unfilled molecular orbitals involved in the promotions.

Møller Plesset Models

An alternative and more commonly used wave function based model 
is Møller-Plesset theory. This assumes that the Hartree-Fock energy 
E0 and wave function Ψ0 are solutions to an equation involving 
a Hamiltonian, Ĥ0, that is very close to the exact Schrödinger 
Hamiltonian, Ĥ. This being the case, Ĥ can be written as a sum of Ĥ0 
and a small correction, V. λ is a dimensionless parameter.

H = H0 + λVˆ ˆ ˆ
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Expanding the exact energy in terms of a power series of the Hartree-
Fock energy yields:

E = E(0) + λE(1) + λ2E(2) + λ3E(3) + ...

Substituting this expansion into the Schrödinger equation and 
collecting terms in powers of λ leads to an explicit expression for the 
energy correction. The sum of E(0) and E(1) is the Hartree-Fock energy. 
Including the next term gives rise to the so-called MP2 (second-order 
Møller-Plesset) model.

Both the simplest configuration interaction (limited to single and 
double electron excitations only) and the MP2 models increase in 
computational cost as the power of the total number of basis 5th 
functions. In practice, this limits them to molecules incorporating 
25-50 heavy (non-hydrogen) atoms at most.

Density functional theory or simply DFT, is based on two theorems 
elaborated by Hohenberg and Kohn, which taken together, prove 
that the energy and other properties of a many-electron system in its 
ground state may be correctly and uniquely described in terms of a 
function of the electron density. The term “functional” or a function 
of a function arises because the electron density is itself a function of 
the three spatial coordinates. What the two Hohenberg-Kohn theorems 
imply is that the Schrödinger equation can actually be solved; that is, 
the completely “intractable” problem involving the coupled motions 
of n electrons in a static field due to the nuclei (a “molecule”) may 
be replaced by an eminently “solvable” problem that treats the 
electrons as independent (that is, non-interacting) particles. Because 
the electron density is a function of only three coordinates, in effect 
a 3 dimensional problem is substituted for a 3n dimensional problem. 
Unfortunately, the Hohenberg-Kohn theorems do not tell us anything 
about the functional itself.

In the density functional formalism, the electronic energy, Eel, is 
written as a sum of the kinetic energy, ET, the electron-nuclear 
interaction energy, EV, the Coulomb energy, EJ, and a term combining 
the exchange and correlation energies, EXC.    

Eel = ET + EV + EJ + EXC
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What is “the” exchange/correlation functional? The quest has gone 
on for several decades and hundreds of functionals have actually been 
proposed and divided into several distinct classes.

Local Density Approximation (LDA)

The functional first proposed stems from a purely hypothetical problem 
in which a uniform gas of non-interacting electrons moves in a 
positively charged field.  An analytical solution for the exchange energy 
is available and takes the form of the density raised to the 4/3’s power. 
The correlation energy may be arrived at through numerical simulation, 
and is also only dependent on only the local density at each point.

EXC = E(ρ)

Functionals that depend only on the electron density (ρ) are referred 
to as LDA functionals. They are not very successful in describing the 
properties of molecules and have largely been replaced.

Generalized Gradient Approximation (GGA)

GGA functionals depend on the gradient of the electron density, ∇ρ, 
in addition to the density itself. 

EXC = E (ρ, ∇ρ)

They have been around since the mid 1980’s and were the first 
to provide a reasonable account of molecular properties and in 
particular the energies of chemical reactions. In this sense, they 
were instrumental in drawing attention to density functional theory 
as a viable “low-cost” alternative to wave function based correlation 
techniques, something that LDA functionals had failed to do. The 
BLYP functional is representative. 

Global Hybrid Generalized Gradient Approximation  
(GH-GGA)

GH-GGA functionals often referred to as hybrid functionals) replace a 
fixed fraction of the exchange by the “exact” Hartree-Fock exchange, 
the fraction being an adjustable parameter. It is likely that it was 
the introduction of hybrid functionals that caused the community 
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to recognize that density functional theory was “semi-empirical” 
in nature. Adding the Hartree-Fock exchange is “costly”, but led 
to significant improvements in the description of reaction energies. 
While GH-GGA functionals were introduced in the early 1990’s, they 
remain a mainstay in the application of density functional theory to 
chemistry. The B3LYP functional, in particular, is perhaps still more 
widely used than any other functional, even though there are now 
much better choices.

Range Separated Hybrid Generalized Gradient Approximation 
(RSH-GGA)

The idea behind range separated GGA hybrid functionals is that the 
“optimum” amount of Hartree-Fock exchange varies with electron-
electron distance, from a small percentage in the long range limit 
to a large percentage in the short range limit, in the extreme from 
0% to100%. Both ωB97X-D and ωB97X-V functionals are range-
separated GGA hybrids. Both incorporate so-called local corrections 
to account for dispersive interactions (see discussion following). 

meta Generalized Gradient Approximation (mGGA)

A meta GGA functional not only depends on the electron density and 
its gradient (as does a GGA functional) but also on the Laplacian of 
the electron density. As such, it can be construed as the next logical 
step beyond GGA in constructing a Taylor series expansion of the 
electron density.

E = E (ρ, ∇ρ,∇2ρ)

More commonly, meta GGA functionals are viewed as adding the 
so-called kinetic energy density to GGA.

E = E (ρ, ∇ρ,∇2ψ)

In either case, the addition can be construed as second-order term 
in a Taylor series expansion of the electron density. The B97M-V 
functional is an example of a “pure” meta functional.
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Global Hybrid meta Generalized Gradient Approximation 
(GH-mGGA)

These are strictly akin to global hybrid GGA (GH-GGA) functionals 
in that a fixed percentage of the Hartree-Fock exchange is introduced. 
The “only” difference is that a meta GGA functional including 
a second-order term replaces a GGA functional. The M06-2X 
functional, widely accepted as an excellent choice for thermochemical 
comparisons, is an example of a GH-meta GGA functional.

Range Separated Hybrid meta Generalized Gradient 
Approximation (RSH-mGGA)

A range-separated meta GGA (RSH-mGGA) functional is identical 
to a range-separated GGA (RSH-GGA) functional except that a meta 
GGA functional has replaced the underlying GGA functional. M11 and 
ωB97M-V are examples of range-separated meta GGA functionals.

Double Hybrid meta Generalized Gradient Approximation 
(DH-RSH-mGGA)

A double hybrid meta GGA (DH-RSH-mGGA) functional accounts 
for contributions of unoccupied molecular orbitals as well as occupied 
orbitals, by way of a MP2 like approach. The wB97M(2) functional 
is now supported for energy calculations only.

Non Local Corrections

The previous functional classes are all considered “local” in that 
they are described in terms of a single integral over the three spatial 
coordinates.  In order to capture dispersive van der Waals interactions, 
so-called non local correlation functionals are needed.  These involve a 
double integral over two sets of coordinates, these may add significant 
cost to the calculations. For example, the range-separated GGA hybrid 
ωB97X-V functional used throughout this text, incorporates theVV10 
non-local correlation functional and is 3-5 times more costly than 
the parent ωB97X functional. An alternative and less costly way to 
account for dispersive interactions is to add an empirical correction 
to the functional. So-called Grimme corrections are designated by 
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appending “-D” as in ωB97X-D, or “D3” as in B3LYP-D3, to the 
end of the functional.

A graphical summary of a number of commonly-used functionals 
stemming from different classes is provided in the figure below. 

Which classes of functionals are “best” and which functionals within 
each class are “best”? A broad base of experience allows some general 
remarks to be made.

Numerical Integration

Unlike both Hartree-Fock and wave function based correlated models, 
density functional models cannot be evaluated wholly analytically. 
Some components require numerical integration, which introduces 
another variable into the mix, specifically the form and size of the 
integration grid. An oversimplified description places the grid points 
along a set number of angular directions and at a set number of 
distances from the origin. This is referred to as a Lebedev grid.
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“Cost” of Density Functional Models

The computation “cost” of density functional models depends on the 
class, the number of basis functions, η, and the number of points in the 
numerical integration grid, κ, where κ >> η. GGA and pure meta-GGA 
functionals such as B97M-V that do not require the Hartree-Fock 
exchange formally scale as O(η2κ). The other functionals combine 
this dependence with the cost of the Hartree-Fock exchange, which 
formally scales as O(η4) but in practice is O(η3) or lower. Finally, 
functionals such as ωB97X-V that directly account for dispersion have 
a step that scales as O(η2κ2). This typically dominates the calculation. 
Times (in minutes) for calculation of the energy together with its 
gradient (“one step” in the optimization of molecular geometry) for 
morphine (C17H19NO3) with the B3LYP (GH-GGA), ωB97X-D 
(RSH-GGA), ωB97X-V (RSH-GGA+dispersion), B97M-V (mGGA), 
M06-2X (GH-mGGA) and M11 and ωB97M-V (RSH-mGGA) 
functionals,  as well as with RI-MP2, which formally scales as O(η5), 
with the 6-31G* basis set are provided in Table A-1. These have been 
obtained using a single core of a 3.3 GHz Intel i7 5820K processor. 
Table A-2provides times for 6-311+G(2df,2p) calculation, a dual 
basis set 6-311+G(2df,2p) calculation and a dual basis set cc-pVQZ-g 
(cc-pVQZ minus the set of g functions) energy calculation, relative to 
the  corresponding 6-31G* energy/gradient calculations. For example, 
the value of 26 for the dual basis set cc-pVQZ–g ωB97X-D energy 
calculation given in Table A-2, means that this calculation is 26 
times more costly than the ωB97X-D energy/gradient calculation. 
Put another way, a structure optimization requiring 26 cycles would 
cost the same as an energy obtained using the larger basis set.

The manner of reporting is deliberate. The 6-31G* basis set is usually 
deemed satisfactory for calculation of equilibrium geometry, whereas 
larger basis sets (for example, 6-311+G(2df,2p) and cc-pVQZ-g) are 
known to be required for accurate descriptions of the energies of most 
chemical reactions. Determination of geometry for molecules of the 
complexity of morphine typically requires upwards of 10-20 energy/
gradient cycles, that is, an order of magnitude or more greater than 
the time reported in the first column of the table. Both parts must be 
considered in order to correctly access cost and practicality.  
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Table A-1: Times for energy and gradient calculations on morphine with 
B3LYP, ωB97X-D, ωB97X-V, B97M-V, M06-2X, M11 and 
ωB97M-V density functional models and RI-MP2 model with 
the 6-31G* basis set (need ωB97M-V times)

 6-31G* + gradient

 B3LYP 7
 ωB97X-D 15
 ωB97X-V 41
 B97M-V 50
 M06-2X 19
 M11 22 
 RI-MP2 10

Table A-2: Times for B3LYP, ωB97X-D, ωB97X-V, B97M-V, M06-2X, 
M11 and ωB97M-V density functional and RI-MP2 energy 
calculations with 6-311+G(2df,2p), dual 6-311+G(2df,2p) and 
dual cc-pVQZ-g basis sets relative to the corresponding times 
for energy and gradient calculations with the 6-31G* basis 
set give in Table A-1  (need ωB97M-V times)

  6-311+G(2df,2p) cc-pVQZ-g
 6-311G(2df,2p) [6-311G*] [rcc-pVQZ]

 B3LYP 26 5 48
 ωB97X-D 14 3 26
 ωB97X-V 6 2 10
 B97M-V 5 2 6
 M06-2X 13 3 21
 M11 11 3 20 
 RI-MP2 18 3 33

Several conclusions may be drawn:

Times for calculation of the energy together with its gradient 1. 
vary by close to an order of magnitude among the seven models. 
The B3LYP model is the least costly and the ωB97X-V, B97M-V 
and ωB97M-V models most costly. The latter result suggests that 
calculation of the gradient of dispersion functional common to 
both models is to blame.  In terms of cost, the ωB97X-D model 
is closest to B3LYP. The surprising result is perhaps the good 
performance of the RI-MP2 model, surpassed only by B3LYP.
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6-311+G(2df,2p) energy calculations are roughly an order of 2. 
magnitude more costly than the corresponding energy/gradient 
calculations. At the high end and low ends is the factor of 26 
for the B3LYP model and a factor of 5 for the B97M-V model. 
Structure optimization typically requires upwards of 20 steps 
(energy/gradient), and will likely dominate the overall task.

The dual basis set approximation applied to 6-311+G(2df,2p) basis 3. 
set leads to significant cost savings. If this is the chosen energy 
method, the costly step will most certainly be determination of 
geometry.

Except for the ωB97X-V and B97M-V functionals, dual basis set 4. 
cc-pVQZ-g calculations are roughly an order of magnitude more 
costly than the corresponding 6-311+G(2df,2p) calculations. This 
means that geometry and energy steps are likely to contribute 
equally to overall cost. The much smaller increase in cost for 
B97M-V is presumably due to its lack of the Hartree-Fock 
exchange.

The RI-MP2 model is clearly competitive, greater in overall cost 5. 
only to the B3LYP models. Because of its inherent O(η5) scaling, 
RI-MP2 will eventually fall significantly behind density functional 
models in performance as molecular size is increased.

Disadvantages of Density Functional Models

Low computation cost relative to wave function based electron 
correlation models is the principal attraction of density functional 
models. Aside from the RI-MP2 model, density functional models 
are the only procedures that are both reliable and routinely applicable 
to molecules of moderate size. However, density functional models 
come with some disadvantages not shared by wave function based 
procedures. By far the most serious of these is that they do not offer 
a clear pathway to improvement. Whereas wave function based 
procedures return a higher and higher percentage of the correlation 
energy with increasing degree of complexity, for example, in 
successively adding orders in the Møller-Plesset models,
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there is no guarantee that increasing the flexibility (and complexity) 
of a particular functional will actually lead to improvement. It is clear 
that present generation functionals are “better” than those of previous 
generations, for example, ωB97X-D and M06-2X are significantly 
better than B3LYP, in particular for calculation of reaction energies. 
What is less clear is whether the improvement is to large extent due 
to careful parameterization to high quality reference data (and to an 
increased number of parameters) rather than from insight into the 
“proper” functional form. Functional selection, even while guided 
by clear physical models, certainly has an uncertain component, and 
at least at present it is not possible to say from first principles which 
of several functionals is likely to provide the “best” results. This can 
only be done by way of thorough comparisons with “known” data. 

In practice, density functional models increase in computational cost 
as the cube of the total number of basis functions (the same dependence 
seen for Hartree-Fock models). Because most functionals require 
calculation of the Hartree-Fock exchange energy, they are necessarily 
more costly than Hartree-Fock models, but can easily be applied to 
molecules incorporating up to 100 heavy (non-hydrogen) atoms.

Models for Open-Shell Molecules

Thus far, discussion has been limited to molecules with closed-
shell electron configurations, that is, with all electrons being paired. 
This covers the vast majority of organic molecules as well as most 
organometallic molecules. There are two ways to think about 
molecules with unpaired electrons. The obvious way is to insist that 
electrons are either paired or are unpaired.
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This is referred to as restricted and the individual models as restricted 
models, for example, the restricted Hartree-Fock (or RHF) model.

The restricted procedure does not necessarily yield the lowest possible 
energy, simply because it forces the “paired” electron into the same 
spatial orbitals. Removing this constrains provides greater flexibility 
and generally lead to a lower energy. This is termed unrestricted and 
the resulting models are termed unrestricted models, for example, the 
unrestricted Hartree-Fock (or UHF) model.

Aside from yielding lower energy, unrestricted models are generally 
less costly than restricted models, and are much more widely used 
and is the default procedure in Spartan.

Semi-Empirical Molecular Orbital Models

The principal disadvantage of Hartree-Fock, density functional and 
MP2 models is their computational cost. It is possible to introduce 
further approximations together with empirical parameters in order to 
significantly reduce cost while still retaining the underlying quantum 
mechanical formalism. So-called semi-empirical molecular orbital 
models follow in a straightforward way from Hartree-Fock models: 

1. Insist that basis functions on different atoms do not overlap (“see 
each other”). The so-called NDDO approximation is rather 
drastic but reduces the computation effort by more than an order 
of magnitude over Hartree-Fock models.

2. Restrict to a minimal valence basis set of atomic functions. This 
means that there are no inner-shell (core) functions in the basis 
set. As a consequence, the cost of doing a calculation involving a 
second-row element such as silicon, is no more than that incurred 
for the corresponding first-row element such as carbon.



530 Appendix A

3. Introduce adjustable parameters to reproduce specific experimental 
data. This is what distinguishes the various semi-empirical models 
currently available. Choice of parameters, more than anything else, 
appears to be the key to formulating successful semi-empirical models.

Molecular Mechanics Models

The alternative to quantum chemical models are molecular mechanics 
models. These do not start from the Schrödinger equation, but 
rather from a simple but chemically reasonable picture of molecular 
structure, a so-called force field. In this picture, just as with a Lewis 
structure, molecules are made up of atoms (as opposed to nuclei and 
electrons), some of which are connected (bonded). Both crowding 
(van der Waals) and charge-charge (Coulombic) interactions between 
atoms are then considered, and atom positions are adjusted to best 
match known structural data (bond lengths and angles). 

Molecular mechanics is much simpler than attempts at solving 
an “approximate” Schrödinger equation, but requires an explicit 
description of chemical bonding, as well as a large amount of 
information about the structures of molecules. This biases results and 
seriously limits the predictive value of molecular mechanics models. 
Nevertheless, molecular mechanics has found an important role in 
molecular modeling as a tool to establish equilibrium geometries 
of proteins and other large molecules. It has also been widely used 
to establish the preferred conformation of molecules with multiple 
degrees of conformational freedom and hundreds or even thousands 
of accessible conformers. With regard to the latter, comparisons with 
results of high-level quantum chemical calculations have, however, 
clearly shown that present-generation molecular mechanics models 
are often not satisfactory in identifying the “best” (lowest-energy) 
conformer and are not to be trusted for obtaining Boltzmann weighed 
averages. However, they have proven to be useful for identifying 
highly unfavorable conformers allowing some shortening of the initial 
list of possible structures.
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Choosing a Theoretical Model

No single method of calculation is likely to be ideal for all applications. 
A great deal of effort has been expended to define the limits of 
different molecular mechanics and quantum chemical models, 
and to judge the degree of success of different models. The latter 
follows from the ability of a model to consistently reproduce known 
(experimental) data. Molecular mechanics models are restricted to 
determination of geometries and conformations of stable molecules. 
Quantum chemical models also provide energy data, which may 
in turn be directly compared with experimental thermochemical 
data, as well as infrared, Raman, UV/visible and NMR spectra and 
properties such as dipole moments, which may be compared directly 
with the corresponding experimental quantities. Quantum chemical 
models may also be applied to transition states. While there are no 
experimental structures with which to compare (see the topic Potential 
Energy Surfaces), experimental kinetic data may be interpreted to 
provide information about activation energies (see the topic Total 
Energies and Thermodynamic and Kinetic Data).

Success is not an absolute. Different properties, and certainly different 
problems may require different levels of confidence to be placed in 
the calculation to actually be of value. Neither is success sufficient. A 
model also needs to be practical for the task at hand. Were this not the 
case, there would be no reason to look further than the Schrödinger 
equation itself. Models that may be practical for small to medium 
size organic molecules cannot be expected to be applied to proteins. 
Models that are successful and practical for organic molecules may 
not necessarily meet either criterion for inorganic molecules or 
transition-metal organometallics. Not only does the nature and size 
of the system needs to be taken into account, with due attention to the 
available computational resources and the experience (and patience) 
of the practitioner. Specifics aside, practical models usually share 
one common feature in that they are not likely to be the best possible 
treatments which have been formulated. Compromise is almost always 
an essential component of model selection. Continued advances in 
both digital computers and computer software will continue to raise 
the bar, but it will be some time before fully reliable models will be 
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routinely applicable to all chemical systems of interest.

The MMFF molecular mechanics model generally provides a 
satisfactory description of equilibrium geometry where, at least for 
organic molecules     . It has also proven to be suitable for removing 
high-energy conformers for molecules with multiple degrees of 
freedom in preface to quantum chemical calculations of conformer 
energy differences.

Semi-empirical model are appropriate for: 

i) Equilibrium geometry determinations for large molecules. 

ii) Transition-state geometry determinations. 

iii) Equilibrium and transition-state geometry determinations 
involving transition metals. 

Semi-empirical models are unsuitable for: 

i) Calculation of reaction energies.

ii) Calculation of conformer energy differences.

Small basis set Hartree-Fock models such as HF/3-21G and  
HF/6-31G* are appropriate for: 

i) Equilibrium and transition-state structure determinations of 
organic molecules.

ii) Calculation of energies of isodesmic reactions, including 
comparisons of regio and stereoisomers.

They are unsuitable for: 

i) Calculation of reaction energies that involve bond making or 
breaking and calculation of absolute activation energies. 

ii) Comparison of isomer energies of molecules with different 
bond types. 

iii) Equilibrium and transition-state structure determinations for 
transition-metal organometallic molecules.

iv) Calculation of conformer energy differences.




