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CALCULATING INFRARED SPECTRA

The infrared spectrum of a molecule arises because of transitions 
between vibrational energy levels. Each line in an infrared spectrum 
is characterized by a frequency (energy) and an intensity. In one 
dimension (a diatomic molecule), it is common practice to assume 
that the frequency is proportional to the square root of the ratio of 
the second-derivative of the energy with respect to the internuclear 
distance, r, and the reduced mass (the product of the masses of the 
two atoms divided by their sum).

vibrational frequency a √ [(d2E(r)/dr2/)reduced mass]

This is referred to as the harmonic approximation, the origin of which 
can be seen by expanding the energy in a Taylor series.

E(r) = E(r0) + (dE(r)/dr) r + (d2E(r)/dr2) r2 + higher-order terms

E(r0) is a constant and dE(r)/dr (the gradient) is assumed to be zero. 
The latter implies that the underlying structure corresponds precisely 
to a minimum (or a maximum) on the potential energy curve. Were 
this not the case, the first derivative would be non zero and the 
calculated frequency would be meaningless. Nearly all practical 
calculations ignore cubic and higher-order terms (anharmonic 
terms), leaving only the  second derivative term (the force constant). 
This said, the frequency may be interpreted as the relative ease or 
difficulty of stretching the bond away from its equilibrium position, 
that is, the curvature of the energy surface at the minimum. Where 
distortion away from the equilibrium position is easy, the result is 
a low frequency; where it is difficult the result is a high frequency. 
High (reduced) mass leads to a low frequency while low mass leads 
to high frequency.

The expression for vibrational frequency qualitatively accounts for mass 
effects on reaction energies (equilibrium isotope effects). Even at 0K 
molecules vibrate, giving rise to the so-called zero-point vibrational 
energy (or simply zero-point energy). Zero-point energy is directly 
proportional to the sum of the vibrational frequencies and decreases with 
increasing mass. For example, the zero-point energy of HCl is lowered 
upon  replacement of hydrogen by deuterium. Thus, the measured energy 
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(enthalpy) decreases with increasing mass and the energy of DCl is smaller 
(more negative) than that for HCl.

Because the  potential energy has been approximated by a quadratic 
function, calculated frequencies will almost always be larger than 
measured frequencies. This is because a quadratic function goes to 
infinity with increase in distance rather than going asymptotically to 
a constant (separated atoms), meaning that the potential curve will 
be too steep.

It is possible to extract the harmonic frequency from an experimental 
spectrum by measuring the spacing of the energy levels associated 
with the ground and excited states of a particular vibration. (The 
lines would be evenly spaced were the potential quadratic.) However, 
such an analysis is impractical for any but diatomic and very simple 
polyatomic molecules.

Generalization from a diatomic to a polyatomic molecule is 
straightforward. The energy of displacement away from the 
equilibrium position is expanded in the same way as before, the only 
difference being that a vector quantity, x, replaces a scalar quantity, x.
E(x) = E(x0) + Σi(∂E(x)/∂xi)xi + ½Σij(∂2E(x)/∂xi∂xj)xixj + higher-order terms

As with the expression for a diatomic molecule, the leading term is a 
constant, the first derivative term is zero and cubic and higher-order 
terms are ignored. For a molecule with N atoms, the dimension of 
x is 3N (x,y,z Cartesian coordinates for each atom), although there 
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are only 3N-6 (3N-5 for a linear molecule) vibrational frequencies. 
Six dimensions (five for a linear molecule) correspond to translation 
away from and rotation around the center of mass. 

The first (and only computationally expensive) step involved in 
calculating the vibrational spectrum of a polyatomic molecule is 
evaluation of the full set of second energy derivatives in Cartesian 
coordinates. These then need to be mass weighted. Diagonal terms 
(∂2E(x)/∂xi

2) are divided by the mass of the atom associated with xi, 
and off-diagonal terms (∂2E(x)/∂xi∂xj) are divided by the product 
of the square root of the masses of the atoms associated with xi and 
xj. These expressions reduce to that already provided for the one-
dimensional case. 

The second step involves replacing the Cartesian coordinates by 
a new set of coordinates ζ, such that the matrix of mass-weighted 
second derivatives is diagonal. δij is the so-called Kronecker delta 
function which is 1 if i=j and 0 otherwise.

[∂2E(ζ)/∂ ζi∂ ζj]/(√Mi√Mj) = δij [∂2E(ζ)/∂ ζi
2]/Mi

These new coordinates are referred to as normal coordinates. While 
the normal coordinates for some vibrations may be described in terms 
of stretching of one bond or bending of one angle, more commonly 
they will be made up of mixtures of several bond stretches, angle 
bends and other motions. 

The third step involves removing the six coordinates corresponding 
to the three translations and three rotations, leaving 3N-6 vibrational 
coordinates. 

The intensity of a line in the infrared spectrum is proportional to 
the change in the dipole moment along the vibrational coordinate. It 
follows that where there is no change in dipole moment, for example, 
in a homonuclear diatomic molecule, the infrared intensity is zero. 

The two major components of the earth’s atmosphere, N2 and O2, are 
homonuclear diatomics and do not absorb in the infrared, that is, the 
intensity is zero. However, two of the four vibrational motions of CO2, 
the third most common but very minor molecular component in the 
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atmosphere, have non-zero infrared intensities.  As a result, carbon 
dioxide absorbs radiation reflected from the earth’s surface thereby 
trapping heat and leading to an increase in temperature (the so-called 
greenhouse effect).

Lack of a line in the infrared spectrum does not mean that the 
molecule does not vibrate or that the vibrational energy for this 
line does not contribute to the zero-point energy. Rather, it means 
that absorption of radiation does not occur leading to a change in 
vibrational energy state. It should also be noted that a particular line 
that is infrared inactive might be visible in the Raman spectrum (an 
alternative form of vibrational spectroscopy based on reflectance 
rather than absorption). Here the intensity is related to the change in 
the polarizability rather than the change in dipole moment. 

The application of quantum chemical models to infrared spectroscopy 
requires calculation of the second energy derivatives and first dipole 
moment derivatives with regard to changes in geometrical coordinate. 
The former completely dominates and scales as the fifth power of the 
size (number of basis functions). Infrared spectra may be calculated 
using semi-empirical molecular orbital models, for example, the 
PM3 models available in Spartan, Hartree-Fock molecular orbital 
models, density functional models and MP2 models. Of the theoretical 
models available in Spartan, semi-empirical models provide a poor 
account, Hartree-Fock models provide a reasonable account but 
density functional and MP2 models with polarization or larger basis 
sets perform best. Density functional models are the obvious choice 
for infrared spectra calculations, offering better results than Hartree-
Fock models at comparable cost, and comparable results at much 
lower cost than MP2 models. 

For two reasons, we recommend EDF2/6-31G* over the wB97X-D/ 
6-31G* model for infrared spectra calculations. First, EDF2/ 
6-31G* was specifically formulated to reproduce measured infrared 
frequencies. Second, it is significantly (factor of two) less costly than 
wB97X-D for frequency calculation and is easily applicable to the 
calculation of infrared spectra of organic molecules of moderate size 
(up to 400-500 amu). There are two major deficiencies with infrared 
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spectra obtained directly from the EDF2/6-31G* model. The first 
is that calculated frequencies are almost always too large, typically 
by 3-5%. This can be directly traced to the harmonic approximation 
and to a potential energy curve that is too steep.

Other density functional models and the MP2 model show similar 
behavior. Vibrational frequencies obtained from Hartree-Fock models 
show an even larger systematic error in the same direction (frequencies 
too large), typically by 12-14%. Here two factors contribute. The first 
is the insistence on a quadratic potential, the same problem associated 
with density functional and MP2 models. The second is due to the fact 
that bond dissociation is improperly described by Hartree-Fock models, 
as evidenced by the fact that Hartree-Fock bond lengths are uniformly 
shorter than experimental distances. This suggests that the potential 
energy surface will be too steep and the frequency will be too large.

The second and more conspicuous deficiency is due to the fact that 
the lines in an infrared spectrum measured at finite temperature are  
broadened due primarily to rotational structure, whereas the lines 
in a calculated spectrum correspond to an isolated molecule at 0K 
and are sharp. There may be other differences, such as the absence 
of overtones, that is, vibrational transitions originating from excited 
vibrational states and, more importantly, lack of solvent. Although 
these are more difficult to quantify.

It is straightforward to correct the calculated spectrum to account 
for both deficiencies. First the spectrum may be uniformly scaled 
(multiplied by a parameter in the range of 0.95-0.97 for density 
functional models). Second, the calculated frequencies and intensities 
may be fit to a Lorentzian function with peak width and half peak 
height being treated as a second parameter. 

Quality of Calculated Infrared Spectra 

An infrared spectrometer records frequencies in the range 500-
4500 cm-1. Frequencies below this range (which may require special 
instrumentation to measure) typically correspond to torsional 
motions and may depend strongly on conformation. It should be 
noted that the spectral region beyond ~2800 cm-1 is dominated by 
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CH stretching vibrations and may be too crowded to be of value.

Calculated infrared spectra from the EDF2/6-31G* model that have  
been scaled to account for the systematic error in frequency and 
broadened to account for finite temperature are visually quite similar to 
the corresponding experimental spectra (taken from the NIST database). 
The four examples that follow, benzamide, (dimethylmethylidene)
cyclopentadiene, 1,2-epoxy-cis-4-vinylcyclohexane and camphor 
are typical of the ~1000 comparisons that have been made.

benzamide

(dimethylmethylidene)cyclopentadiene

1,2-epoxy-cis-4-vinylcyclohexane

camphor
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Even though scale and line-broadening parameters have been 
individually adjusted for these four examples, the values of the 
parameters are quite similar. Default  parameters could have been 
substituted with little change.

Database of Infrared Spectra

More than 300,000 infrared spectra from the EDF2/6-31G* model 
are available in the Spartan Spectra and Properties Database 
(SSPD). wB97X-D entries in SSPD presently do not include infrared 
spectra.

Raman Spectra

Spartan is also able to calculate Raman spectra. The frequencies are 
identical to infrared frequencies but the intensities depend on the 
charge in polarizability rather than the change in dipole moment.




