ODYSSEY Molecular Explorer

— Release 6.2 —

Correlation with the

Arizona Science Standards High School

Approved May 24, 2004

Physical Science

Concept 1: Structure and Properties of Matter

Understand physical, chemical, and atomic properties of matter.

- 1. Describe substances based on their physical properties.
 - → LAB Chemical Matter "Chemical and Physical Properties"
- 2. Describe substances based on their chemical properties.
 - → LAB Chemical Matter "Chemical and Physical Properties"
- 3. Predict properties of elements and compounds using trends of the periodic table (e.g., metals, non-metals, bonding ionic/covalent).
 - → LAB Chemical Bonding "Classifying by Bond Polarity"
- 4. Separate mixtures of substances based on their physical properties.
 - → MISCELLANEOUS Chemical Matter "The Types of Mixtures"
- 6. Describe the following features and components of the atom:
 - protons
 - neutrons
 - electrons
 - mass
 - number and type of particles
 - structure
 - organization
 - → LAB Atoms "Nuclei and Electrons"

→ LAB Atoms "The Electron Cloud of an Argon Atom" 8. Explain the details of atomic structure (e.g., electron configuration, energy levels, isotopes). → LAB Atoms "s- and p-Orbitals" → LAB Atoms "The Electron Cloud of an Argon Atom" → LAB Atoms "d-Orbitals" **Concept 3: Conservation of Energy and Increase in Disorder** Understand ways that energy is conserved, stored, and transferred. 3. Recognize that energy is conserved in a closed system. → **DEMONSTRATION** Thermochemistry "What is the energy of a vibrating diatomic molecule?" 4. Calculate quantitative relationships associated with the conservation of energy. → DEMONSTRATION Thermochemistry "What is the energy of a vibrating diatomic molecule?" 5. Analyze the relationship between energy transfer and disorder in the universe (2nd Law of Thermodynamics). → **DEMONSTRATION** Chemical Thermodynamics "Are gas expansions irreversible?" → **DEMONSTRATION** Chem. Thermodyn. "Do all spontaneous processes involve a visible increase of disorder?" 6. Distinguish between heat and temperature. → LAB Thermochemistry "Thermal Energy" 7. Explain how molecular motion is related to temperature and phase changes. → LAB Liquids & Solids "The Melting Transition" → **DEMONSTRATION** Chemical Matter "Do physical changes affect the amount of matter?" → LAB Gases "The Meaning of Temperature" → LAB Gases "Mean Speed and Temperature"

Concept 4: Chemical Reactions

Investigate relationships between reactants and products in chemical reactions.

1. Apply the law of conservation of matter to changes in a system.	
	→ LAB Liquids & Solids "The Melting Transition"
matter?"	→ DEMONSTRATION Chemical Matter "Do physical changes affect the amount of
matter:	→ LAB Kinetics "Examining a Reaction Mechanism"
3. Represent a chemical reaction by using a balanced equation.	
	→ LAB Kinetics "Examining a Reaction Mechanism"
4. Distinguish among the types of bonds (i.e., ionic, covalent, metallic, hydrogen bonding).	
	→ LAB Chemical Bonding "Exploring Ionic Interactions"
	→ DEMONSTRATION Atoms "What does a hydrogen atom look like?"
	→ Lab Chemical Bonding "Energetics of Covalent Bonding"
	→ Lab Liquids & Solids "Structure and Dynamics of Liquid Water"
	→ Lab Liquids & Solids "Intermolecular Forces"
	→ MISCELLANEOUS Liquids & Solids "Elements with HydrogenBonding"
6. Solve problems involving such quantities as moles, mass, molecules, volume of a gas, and molarity using the mole concept and Avogadro's number.	
	→ LAB Solutions "Concentration of a Dissolved Pesticide"
7. Predict the type.	properties (e.g., melting point, boiling point, conductivity) of substances based upon bond
	→ MISCELLANEOUS Chemical Bonding "Dipole Moments"
	e relationships between reactants and products in chemical reactions (e.g., stoichiometry, energy transfers).
molecular l	→ DEMONSTRATION <i>Kinetics</i> "What does a chemical reaction look like at the evel?"
	→ LAB Kinetics "Examining a Reaction Mechanism"
	→ LAB Equilibria "Equilibrium and Temperature"
	→ Lab Equilibria "Equilibrium and Pressure"
10. Explain the energy transfers within chemical reactions using the law of conservation of energy.	
	→ LAB Kinetics "Reactive Collisions Between Molecules"
	→ LAB Kinetics "Examining a Reaction Mechanism"

 \longrightarrow Lab Equilibria "Equilibrium and Temperature"

11. Predict the effect of various factors (e.g., temperature, concentration, pressure, catalyst) on the equilibrium state and on the rates of chemical reaction.	
→ LAB Kinetics "Reactive Collisions Between Molecules"	
→ Lab Equilibria "Equilibrium and Temperature"	
→ LAB Equilibria "Equilibrium and Pressure"	
12. Compare the nature, behavior, concentration, and strengths of acids and bases.	
→ LAB Acids & Bases "Strong Acids"	
→ LAB Acids & Bases "Structure and Acidity"	
Concept 5: Interactions of Energy and Matter Understand the interactions of energy and matter.	
4. Describe the basic assumptions of kinetic molecular theory.	
→ LAB Gases "The Distribution of Kinetic Energies"	
→ LAB Gases "The Meaning of Temperature"	
→ LAB Gases "Mean Speed and Temperature"	
5. Apply kinetic molecular theory to the behavior of matter (e.g., gas laws).	
→ LAB Gases "The Pressure-Volume Relationship"	
→ DEMONSTRATION Gases "Do gases have a definite volume?"	
→ LAB Gases "The Pressure-Temperature Relationship"	
→ DEMONSTRATION Gases "What is Boyle's Law?"	
→ DEMONSTRATION Gases "What is Avogadro's Law?"	
6. Analyze calorimetric measurements in simple systems and the energy involved in changes of state.	
→ LAB Thermochemistry "Specific Heat"	